Linear Stability of Ricci Nilsolitons

نویسندگان

  • CHRISTINE GUENTHER
  • DAN KNOPF
چکیده

As a step toward understanding the analytic behavior of TypeIII Ricci flow singularities, i.e. immortal solutions that exhibit |Rm | ≤ C/t curvature decay, we examine the linearization of an equivalent flow at certain fixed points discovered recently by Baird–Danielo and Lott: non-gradient homogeneous Ricci solitons on nilpotent Lie groups. We show that the linearized operators at these fixed points are linearly stable and generate C0 semigroups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ricci Nilsoliton Black Holes

We follow a constructive approach and find higher-dimensional black holes with Ricci nilsoliton horizons. The spacetimes are solutions to Einstein’s equation with a negative cosmological constant and generalises therefore, anti-de Sitter black hole spacetimes. The approach combines a work by Lauret – which relate so-called Ricci nilsolitons and Einstein solvmanifolds – and an earlier work by th...

متن کامل

Einstein solvmanifolds and nilsolitons

The purpose of the present expository paper is to give an account of the recent progress and present status of the classification of solvable Lie groups admitting an Einstein left invariant Riemannian metric, the only known examples so far of noncompact Einstein homogeneous manifolds. The problem turns to be equivalent to the classification of Ricci soliton left invariant metrics on nilpotent L...

متن کامل

Linear Stability of Homogeneous Ricci Solitons

As a step toward understanding the analytic behavior of Type-III Ricci flow singularities, i.e. immortal solutions that exhibit |Rm | ≤ C/t curvature decay, we examine the linearization of an equivalent flow at fixed points discovered recently by Baird–Danielo and Lott: nongradient homogeneous expanding Ricci solitons on nilpotent or solvable Lie groups. For all explicitly known nonproduct exam...

متن کامل

On Randers metrics of reversible projective Ricci curvature

projective Ricci curvature. Then we characterize isotropic projective Ricci curvature of Randers metrics. we also show that Randers metrics are PRic-reversible if and only if they are PRic-quadratic../files/site1/files/0Abstract2.pdf

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006